

Customize service and solution for wireless transportation products

Bluetooth Module Hardware Datasheet BTM0608C2X

Contents

1.	Feature	es	1
2.	Produc	et Description	1
3.	Applic	ations	2
4.	Block	Diagram	2
5.	Device	e Details	3
6.	Pin De	escriptions	5
7.	Electri	cal Specifications	7
	7.1	Absolute Maximum Ratings	7
	7.2	Recommended Operating Conditions	7
	7.3	Regulator Enable	8
	7.4	Battery Charger	8
	7.5	USB	9
	7.6	Stereo Codec: Analogue to Digital Converter	9
	7.7	Stereo Codec: Digital to Analogue Converter	.10
	7.8	Digital	.10
	7.9	LED Driver Pads	. 11
	7.10	Auxiliary ADC	. 11
	7.11	Auxiliary DAC	. 11
8.	Power	Consumption	. 11
9.	Progra	mmable I/O Ports, PIO	.12
	9.1	Analogue I/O Ports, AIO	.13
	9.2	LED Drivers	.13
10.	USE	3 Interface	.14
11.	UAl	RT Interface	.14
12.	Aud	lio Interface	.16
	12.1	Audio Input and Output	.17
	12.2	Audio Codec Interface	.17
	12.3	Audio Codec Block Diagram	.17
	12.4	Codec Set-up	.18
	12.5	ADC	.18
	12.6	ADC Sample Rate Selection	.19
	12.7	ADC Audio Input Gain	.19
	12.8	ADC Pre-amplifier and ADC Analogue Gain	.19
	12.9	ADC Digital Gain	.19
	12.10	ADC Digital IIR Filter	.20
	12.11	DAC	.20
	12.12	DAC Sample Rate Selection	.20
	12.13	DAC Digital Gain	.20
	12.14	DAC Analogue Gain	.21
	12.15	DAC Digital FIR Filter	.21
	12.16	IEC 60958 Interface	.21

Chongqing JIN	OU Science and Technology Development Co.,	JO-0456
13. Physic	cal Dimensions	23

JO-0456

Bluetooth Module Class 2

1. Features

- Bluetooth® v4.0 specification fully qualified software
- Radio includes integrated balun
- 80MHz RISC MCU and 80MIPS Kalimba DSP
- 16Mb internal flash memory (64-bit wide, 45ns); optional support for 64Mb of external SPI flash
- Stereo codec with 2 channels of ADC and up to 6 microphone inputs (includes bias generators and digital microphone support)
- Support for CSR's latest CVC technology for narrow-band and wideband voice connections including wind noise reduction
- Audio interfaces: I S, PCM and SPDIF
- Serial interfaces: UART, USB 2.0 full-speed, I€
- Green (RoSH compliant and no antimony or halogenated flame retardants)

2. Product Description

JO-0456 consumer audio platform for wired and wireless applications integrates an ultralow-power DSP and application processor with embedded flash memory, a high-performance stereo codec, a power management subsystem,. The dual-core architecture with flash memory enables manufacturers to easily differentiate their products with new features without extending development cycles.

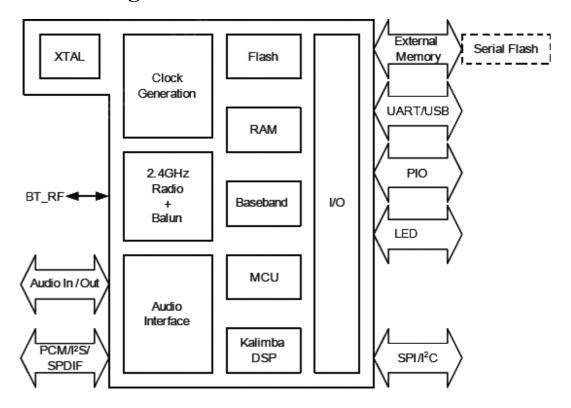
CSR's popular BlueCore5-Multimedia® platform is software-portable to the JO-0456, with

easy migration of a broad range of solutions from CSR's eXtension partners. This migration enables rapid timeto-market deployment of a broad range of consumer electronics products.

The enhanced Kalimba DSP coprocessor with 80MIPS supports enhanced audio and DSP applications.

3. Applications

Home Entertainment Ecosystem


- TVs
- Smart remote controllers
- Wired or wireless soundbars
- Wired or wireless speakers and headphones

Tablets / PCs / Mobile Connectivity

- Wearable audio (on-the-go)
- Wearable audio with sensors (health and wellbeing applications)
- Wired or wireless stereo headphones for music/gaming/multimedia content
- Wired or wireless speakers
- Wired or wireless speakerphones
- Mono headsets for voice

The audio codec supports 2 ADC channels, up to 6 microphone inputs, stereo output and a variety of audio standards.

4. Block Diagram

5. Device Details

Bluetooth low energy

- Dual-mode Bluetooth low energy radio
- Support for Bluetooth basic rate / EDR and low energy connections
- 3 Bluetooth low energy connections at the same time as basic rate A2DP

Bluetooth Radio

- \blacksquare On-chip balun (50 Ω impedance in TX and RX modes)
- No external trimming is required in production
- Bluetooth v4.0 specification compliant hardware
- Bluetooth v4.0 specification fully qualified software

Bluetooth Transmitter

- 10dBm RF transmit power with level control from on-chip 6-bit DAC
- Class 1, Class 2 and Class 3 support without the need for an external power amplifier or TX/RX switch

Bluetooth Receiver

- Receiver sensitivity: -90dBm (basic rate) and -92dBm (EDR)
- Integrated channel filters
- Digital demodulator for improved sensitivity and co-channel rejection
- Real-time digitised RSSI available to application
- Fast AGC for enhanced dynamic range
- Channel classification for AFH

Kalimba DSP

- Enhanced Kalimba DSP coprocessor, 80MIPS, 24-bit fixed point core
- Single-cycle MAC; 24 x 24-bit multiply and 56-bit accumulate with improved architecture and instructions for better performance
- 32-bit instruction word, dual 24-bit data memory
- 12K x 32-bit program RAM including 1K instruction cache for executing out of internal flash
- 32K x 24-bit + 32K x 24-bit 2- bank data RAM

Audio Interfaces

- Audio codec with 2 high- quality dedicated ADCs
- 2 microphone bias generators and up to 2 analogue microphone inputs
- Up to 6 digital microphone inputs (MEMS)
- G.722 compatible, includes improved digital FIR filter path for stop- band attenuation required for G.722 compliance
- Enhanced side- tone gain control
- Supported sample rates of 8, 11.025, 16, 22.05, 32, 44.1, 48 and 96kHz (DAC only)

Package Option

■ 19.812mm x 15.24mm x 1.93mm

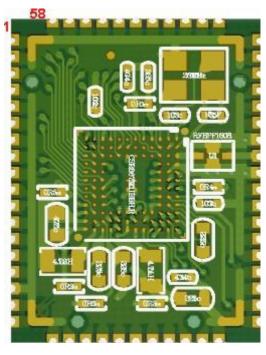
Physical Interfaces

- UART interface
- USB 2.0 interface (full- speed)
- Master and slave I€ interface

- Up to 26 PIOs, i.e. 10 general purpose PIOs and unused digital interfaces are available as PIOs
- SPI debug and programming interface with read access disable locking
- PCM, IS and SPDIF interfaces
- Dual/quad external serial flash memory interface
- 1 LED drivers with PWM flasher on sleep clock

Battery Charger

- Lithium ion / Lithium polymer battery charger with instant- on
- Fast charging support up to 200mA with no external components
- Higher charge currents using external pass device
- Supports USB charge enumeration
- Charger pre- calibrated by CSR
- PSE compliance:
- Design to JIS- C 8712/8714(batteries)
- Testing based on IEEE 1725


Auxiliary Features

- Customer application space available
- Crystal oscillator with built- in digital trimming
- Clock request output to control external clock
- Auxiliary ADC and DAC available to applications

Baseband and Software

- 16Mb internal flash
- Memory protection unit supporting accelerated VM
- 56KB internal RAM, enables full- speed data transfer, mixed voice/data and full piconet support
- Logic for forward error correction, header error control, access code correlation, CRC, demodulation, encryption bit stream generation, whitening and transmit pulse shaping
- Transcoders for A- law, μ- law and linear voice via PCM and A- law, μ- law and CVSD voice over air

6.Pin Descriptions

PIN	Name	Type	Description
40	BT_RF2	RF	Bluetooth 50Ω transmitter output / receiver input
54	UART_RX	BU	UART data input.
55	UART_RTS	BU	UART request to send, active low. Alternative function
			PIO[16].
56	UART_TX	BU	UART data output.
57	UART_CTS	BD	UART clear to send, active low.
10	USB_P	BB	USB data plus with selectable internal 1.5kΩ pull-up
			resistor
11	USB_N	BB	USB data minus
49	PCM_IN	BD	Synchronous data input. Alternative function PIO[17].
50	PCM_ CLK	BD	Synchronous data clock. Alternative function PIO[20].
51	PCM_SYNC	BD	Synchronous data sync. Alternative function PIO[19].
52	PCM_OUT	BD	Synchronous data output. Alternative function PIO[18].
44	SPI_CLK	ID	SPI clock
45	SPI_MOSI	ID	SPI data input
46	SPI_MISO	OD	SPI data output
47	SPI_CS	IU	Chip select for SPI, active low
58	PIO[0]	BI	Programmable input / output line

- 5 -

	*****		T
1	PIO[1]	BI	
2	PIO[2]	BI	
3	PIO[3]	BI	
4	PIO[4]	BI	
5	PIO[5]	BI	
6	PIO[6]	BI	
7	PIO[7]	BI	
8	PIO[8]	BI	If interrupts are enabled on VREGENABLE the logic
			signal is internally routed to PIO[8] to enable CSR8670
			BGA to wake up from deep sleep when VREGENABLE
			is pressed,
9	PIO[9]	BI	If interrupts are enabled on VCHG the logic signal is
			internally routed to PIO[9] to enable CSR8670 BGA to
			wake up from deep sleep when VCHG is pressed,
42	AIO[0]	BB	Analogue programmable input / output line
43	AIO[1]	BB	Analogue programmable input / output line
19	QSPI_FLASH_CLK	BSD	SPI flash clock. Alternative function PIO[21].
20	QSPI_FLASH_CS	BSU	SPI flash chip select. Alternative function PIO[23]
21	QSPI_FLASH_IO[0]	BSD	Serial quad I/O flash data bit 0.Alternative function
			PIO[25].
22	QSPI_FLASH_IO[1]	BSD	Serial quad I/O flash data bit 1.Alternative function
			PIO[26].
23	QSPI_FLASH_IO[2]	BSD	Serial quad I/O flash data bit 2.Alternative function
			PIO[27].
24	QSPI_FLASH_IO[3]	BSD	Serial quad I/O flash data bit 3.Alternative function
			PIO[28].
25	QSPI_SRAM_CLK	BSD	SPI RAM clock. Alternative function PIO[22].
26	QSPI_SRAM_CS#	BSU	SPI RAM chip select. Alternative function PIO[24].
27	MIC_LN	AI	Microphone input positive, left
28	MIC_LP	AI	Microphone input negative, left
31	M_RN	AI	Microphone input positive, right
32	M_RP	AI	Microphone input negative, right
30	MIC_BIAS_A	AO	Microphone bias A
33	MIC_BIAS_B	AO	Microphone bias B
34	SPKR_LN	AO	Speaker output negative, left
35	SPKR_LP	AO	Speaker output positive, left
36	SPKR_RN	AO	Speaker output negative, right
37	SPKR_RP	AO	Speaker output positive, right
48	LED[0]	OC	LED driver. Alternative function PO[29].

53	RST#	IU	Reset if low. Input debounced so must be low for >5ms to
			cause a reset.

12	VBAT_SENSE	Battery charger sense input
13	VBAT	Battery positive terminal
14	VCHG	Battery charger input
15	VOUT_3V3	Power Supply Input
17	CHG_EXT	External battery charger control
18	VREGENABLE	Regulator enable input
	GND	16、29、38、39、41

BD = Bidirectional with weak pull-down

BU = Bidirectional with weak pull-up

BB = Bidirectional

BSD = Bidirectional with strong pull-down

BSU = Bidirectional with strong pull-up

OD = Output with weak pulldown

ID = Input with weak pulldown

IU = Input with strong pull-up

AI = Analogue in

AO = Analogue out

OC = Open drain

7. Electrical Specifications

7.1 **Absolute Maximum Ratings**

Rat	ting	Min	Max	Unit
Storage te	emperature	-40	105	${\mathbb C}$
5V	5V VCHG		5.75 / 6.50(a)	V
3.3V	3.3V VOUT_3V3		-0.4 3.60	
	VBAT_SENSE	-0.4	5.75	V
Battery	VBAT	-0.4	4.40	V
	VREGENABLE	-0.4	4.40	V

7.2 **Recommended Operating Conditions**

Rating		Min	Тур	Max	Unit
Operating temperature range		-40	20	85	$^{\circ}$ C
5V	VCHG	4.75	5.00	5.75	V
3.3V	VOUT_3V3	3.10	3.30	3.60	V
	VBAT_SENSE	0	3.70	4.30	V
Battery	VBAT	2.80	3.70	4.30	V
	VREGENABLE	0	3.70	4.25	V

7.3 Regulator Enable

VREGENABLE, Switching Threshold	Min	Тур	Max	Unit
Rising threshold	-	-	1.0	V

7.4 Battery Charger

Battery Charger	Min	Тур	Max	Unit
Input voltage, VCHG	4.75	5.00	5.75	V

Trickle Charge Mode	Min	Тур	Max	Unit
Charge current Itrickle, as percentage of fast charge	8	10	12	%
current				
Vfast rising threshold	-	2.9	-	V
Vfast rising threshold trim step size	-	0.1	-	V
Vfast falling threshold	-	2.8	-	V

Fast Charge Mode			Тур	Max	Unit
Charge current during	Max, headroom > 0.55V	194	200	206	mA
constant current mode, Ifast	Min, headroom > 0.55V	-	10	-	mA
Reduced headroom charge					
current, as a percentage of	Mid, headroom = $0.15V$	50	-	100	%
Ifast					
Charge current step size		-	10	-	mA
Vfloat threshold, calibrated	4.16	4.20	4.24	V	
Charge termination current It	erm, as percentage of Ifast	7	10	20	mA

Standby Mode		Тур	Max	Unit
Voltage hysteresis on VBAT, Vhyst	100	-	150	mV

Error Charge Mode		Тур	Max	Unit
Headroom(a) error falling threshold		50	-	mV

External Charge Mode(a)	Min	Тур	Max	Unit
Fast charge current, Ifast	200	-	500	mA
Control current into CHG_EXT	0	-	20	mA
Voltage on CHG_EXT	0	-	5.75	V
External pass device hfe	25	50	250	-
Sense voltage, between VBAT_SENSE and VBAT at	195	200	205	mV
maximum current				

- 8 -

7.5 USB

	Min	Тур	Max	Unit
VDD_USB for correct USB operation	3.10	3.30	3.60	V
Input Threshold				
VII input logic level leve			0.30 x	V
VIL input logic level low	-	-	VDD_USB	
VIH input logic level high	0.70 x			V
VIII input logic level liigh	VDD_USB	-	_	v
Output Voltage Levels to Correctly Terminated U	SB Cable			
VOL output logic level low	0	-	0.2	V
VOH output logic level high	2.80	-	VDD_USB	V

VDD_USB = VOUT_3V3

7.6 Stereo Codec: Analogue to Digital Converter

Analogue to Digital Converter								
Parameter	Condition	Min	Тур	Max	Unit			
Resolution	-		-	-	16	Bits		
Input Sample	_		8	_	48	kHz		
Rate, Fsample			0		70	KIIZ		
	fin = 1kHz	Fsample						
	$B/W=20Hz \rightarrow F/2$	8kHz	-	93	-	dB		
SNR	(20kHz max)	16kHz	-	92	1	dB		
SINK	A-Weighted	32kHz	-	92	-	dB		
	THD+N < 0.1%	44.1kHz	-	92	-	dB		
	1.6Vpk-pk input	48kHz	-	92	-	dB		
	fin = 1kHz	Fsample						
THD+N	$B/W=20Hz \rightarrow F/2$	8kHz	-	0.004	-	%		
THD+N	(20kHz max)	48kHz		0.008		%		
	1.6Vpk-pk input	40K11Z	-	0.008	_	70		
Digital gain	Digital gain resolution	n = 1/32	-24	-	21.5	dB		
	Pre-amplifier setting =	odB, 9dB,						
A1	21dB or 30dB		2		40	4D		
Analogue gain	Analogue setting = -3e	dB to 12dB in	-3	_	42	dB		
	3dB steps							
Stereo separation (crosstalk)		-	-89	-	dB		

F = Fsample

- 9 -

7.7 Stereo Codec: Digital to Analogue Converter

Digital to Analogue Converter								
Parameter	Con	Conditions			Тур	Max	Unit	
Resolution		-			-	16	Bits	
Output Sample Rate, Fsample		-		8	-	96	kHz	
1000, 1 5000, 10	fin = 1kHz	Fsample	Load					
	$B/W=20Hz \rightarrow F/2$	48kHz	100kΩ	-	96	-	dB	
SNR	A-Weighted THD+N $< 0.1\%$	48kHz	32Ω	-	96	-	dB	
	0dBFS input	48kHz	16Ω	-	96	-	dB	
	fin = 1kHz	Fsample	Load					
	$B/W=20Hz \rightarrow F/2$	8kHz	100kΩ	-	0.002	-	%	
	0dBFS input	8kHz	32Ω	-	0.002	-	%	
THD+N		8kHz	16Ω	-	0.003	-	%	
		48kHz	100kΩ	-	0.003	-	%	
		48kHz	32Ω	-	0.003	-	%	
		48kHz	16Ω	-	0.004	-	%	
Digital gain	Digital gain resolu	Digital gain resolution = 1/32			-	21.5	dB	
Analogue gain	Analogue Gain Resolution = 3dB		-21	-	0	dB		
Output voltage	Full-scale swing ((differential)		-		778	mV	
Output voltage	Tun-scale swing (Full-scale swing (differential)		-		770	rms	
Stereo separation (crosstalk)			-	-88	-	dB	

7.8 Digital

Digital Terminals	Min	Тур	Max	Unit
Input Voltage	•			
VIL input logic level low	-0.4	-	0.4	V
VIH input logic level high	0.7 x VDD	-	VDD + 0.4	V
Tr/Tf	-	-	25	ns
Output Voltage	•			
VOL output logic level low, IOL = 4.0mA	-	-	0.4	V
VOH output logic level high, lOH = -4.0mA	0.75 X	-	-	V
	VDD			
Tr/Tf	-	-	5	ns
Input and Tristate Currents				
Strong pull-up	-150	-40	-10	uA
Strong pull-down	10	40	150	uA
Weak pull-up	-5	-1.0	-0.33	uA
Weak pull-down	0.33	1.0	5.0	uA
CI Input Capacitance	1.0	-	5.0	pF

- 10 -

7.9 LED Driver Pads

LED Driver Pads		Min	Тур	Max	Unit
Cumont IDAD	High impedance state	-	-	5	uA
Current, IPAD	Current sink state	-	-	10	mA
LED pad voltage, VPAD	IPAD = 10mA	-	-	0.55	V
LED pad resistance	VPAD < 0.5V	-	-	40	Ω

7.10 Auxiliary ADC

Auxiliary ADC			Тур	Max	Unit
Resolution		-	-	10	Bits
Input voltage range(a)		0	-	VDD	V
Accuracy	INL	-1	-	1	LSB
(Guaranteed monotonic)	DNL	0	-	1	LSB
Offset		-1	-	1	LSB
Gain error		-0.8	-	0.8	%
Input bandwidth		-	100	-	KHz
Conversion time		1.38	1.69	2.75	uS
Sample rate(b)		-	-	700	Samples/S

⁽a) LSB size = VDD/1023

VDD = 1.35V(Min=1.30V, Max=1.45V)

7.11 Auxiliary DAC

Auxiliary DAC	Min	Тур	Max	Unit
Resolution	-	-	10	Bits
Supply voltage, VDD_AUX	1.30	1.35	1.40	V
Output voltage range	0	-	VDD_AUX	V
Full-scale output voltage	1.30	1.35	1.40	V
LSB size	0	1.32	2.64	mV
Offset	-1.32	0	1.32	mV
Integral non-linearity	-1	0	1	LSB
Settling time(a)	-	-	250	ns

8. Power Consumption

DUT Role		Connection			Unit
N/A	Deep sleep	With UART host connection	-	60	uA
N/A	Page scan	Page = 1280ms interval Window = 11.25ms	-	242	uA
N/A	Inquiry and page scan	Inquiry = 1280ms interval Page = 1280ms interval	-	405	uA

- 11 -

⁽b) The auxiliary ADC is accessed through a VM function. The sample rate given is achieved as part of this function.

		Window = 11.25ms			
Master	ACL	Sniff = 500ms, 1 attempt, 0 timeout	DH1	139	uA
Master	ACL	Sniff = 1280ms, 8 attempts, 1 timeout	DH1	127	uA
Master	SCO	Sniff = 100ms, 1 attempt, PCM	HV3	8.7	mA
Master	SCO	Sniff = 100ms, 1 attempt, mono audio codec	HV3	10.5	mA
Master	eSCO	Setting S3, sniff = 100ms, PCM	2EV3	6.7	mA
Master	eSCO	Setting S3, sniff = 100ms, PCM	3EV3	6.4	mA
Master	eSCO	Setting S3, sniff = 100ms, mono audio codec	2EV3	8.5	mA
Master	eSCO	Setting S3, sniff = 100ms, mono audio codec	3EV3	8.2	mA
Slave	ACL	Sniff = 500ms, 1 attempt, 0 timeout	DH1	150	uA
Slave	ACL	Sniff = 1280ms, 8 attempts, 1 timeout	DH1	147	uA
Slave	SCO	Sniff = 100ms, 1 attempt, PCM	HV3	9.1	mA
Slave	SCO	Sniff = 100ms, 1 attempt, mono audio codec	HV3	10.7	mA
Slave	eSCO	Setting S3, sniff = 100ms, PCM	2EV3	7.2	mA
Slave	eSCO	Setting S3, sniff = 100ms, PCM	3EV3	6.9	mA
Slave	eSCO	Setting S3, sniff = 100ms, mono audio codec	2EV3	9.0	mA
Slave	eSCO	Setting S3, sniff = 100ms, mono audio codec	3EV3	8.6	mA

9. Programmable I/O Ports, PIO

26 lines of programmable bidirectional I/O are available on the module. Some of the PIOs on the module have alternative functions:

- 3 digital microphone interfaces for control of up to 6 digital microphones:
 - Clock on any even PIOs as determined by the software
 - Data on any odd PIOs as determined by the software
- I€interface on any PIOs as determined by the software

Note:

If wake up of module is required via the VCHG pin, then the operation of PIO[9] is NC and should be left unconnected. Otherwise, configuration of PIO[9] as a PIO is by setting PSKEY_VCHG_REROUTE_INTERNALLY_VIA_PIO to 0xffff, for more information contact CSR.

If wake up of module is required via the VREGENABLE pin, then the operation of PIO[8] is NC and should be left unconnected. Otherwise, configuration of PIO[8] as a PIO is by setting PSKEY_VREG_EN_REROUTE_INTERNALLY_VIA_PIO to 0xffff, for more information contact CSR.

- LED[0] directly map to PO[29]
- PCM interface on PIO[20:17]
- UART RTS on PIO[16]

■ Serial quad I/O flash interface on PIO[28:24]

Note:

See the relevant software release note for the implementation of these PIO lines, as they are firmware buildspecific.

9.1 Analogue I/O Ports, AIO

Module has 2 general-purpose analogue interface pins, AIO[1:0], for accessing internal circuitry and control signals. Auxiliary functions available on the analogue interface include a 10-bit ADC. Signals selectable on this interface include the band gap reference voltage. When configured for analogue signals the voltage range is constrained by the analogue supply voltage.

9.2 LED Drivers

Module includes a 3-pad synchronised PWM LED driver for driving RGB LEDs for producing a wide range of colours.

The terminals are open-drain outputs, so the LED must be connected from a positive supply rail to the pad in series with a current-limiting resistor.

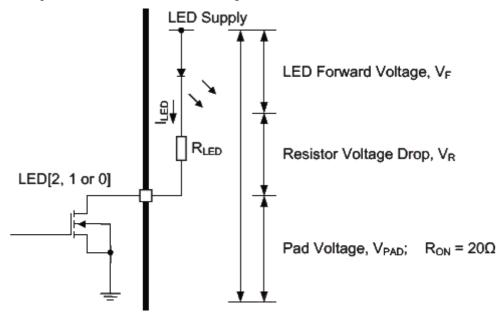


Figure 8.2: LED Equivalent Circuit

From Figure 8.2 it is possible to derive Equation 8.1 to calculate ILED. If a known value of current is required through the LED to give a specific luminous intensity, then the value of RLED is calculated.

$$I_{LED} = \frac{VDD - V_F}{R_{LED} + R_{ON}}$$

Equation 8.1: LED Current

For the LED pads to act as resistance, the external series resistor, RLED, needs to be such that the voltage drop across it, VR, keeps VPAD below 0.5V. Equation 8.2 also applies.

$$VDD = V_F + V_R + V_{PAD}$$

Equation 8.2: LED PAD Voltage

Note:

The LED current adds to the overall current. Conservative LED selection extends battery life.

10. USB Interface

It has a full-speed (12Mbps) USB interface for communicating with other compatible digital devices. The USB interface on this act as a USB peripheral, responding to requests from a master host controller.

This supports the Universal Serial Bus Specification, Revision v2.0 (USB v2.0 Specification) and USB Battery Charging Specification, available from http://www.usb.org. For more information on how to integrate the USB interface on it see the Bluetooth and USB Design Considerations Application Note.

As well as describing USB basics and architecture, the application note describes:

- Power distribution for high and low bus-powered configurations
- Power distribution for self-powered configuration, which includes USB VBUS monitoring (when VBUS is >3.1)
- USB enumeration
- Electrical design guidelines for the power supply and data lines, as well as PCB tracks and the effects of ferrite beads
- USB suspend modes and Bluetooth low-power modes:
 - Global suspend
 - Selective suspend, includes remote wake
 - Wake on Bluetooth, includes permitted devices and set-up prior to selective suspend
 - Suspend mode current draw
 - PIO status in suspend mode
 - Resume, detach and wake PIOs
- Battery charging from USB, which describes dead battery provision, charge currents, charging in suspend modes and USB VBUS voltage consideration
- USB termination when interface is not in use
- Internal modules, certification and non-specification compliant operation

11. UART Interface

This is a standard UART interface for communicating with other serial devices.

The UART interface provides a simple mechanism for communicating with other serial devices using the RS-232 protocol.

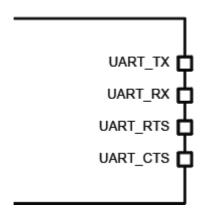


Figure 7.1: Universal Asynchronous Receiver Transmitter (UART)

Figure 7.1 shows the 4 signals that implement the UART function. When module is connected to another digital device, UART_RX and UART_TX transfer data between the 2 devices. The remaining 2 signals, UART_CTS and UART_RTS, implement RS232 hardware flow control where both are active low indicators.

If UART_CTS and UART_RTS are not required for hardware flow control, they are reconfigurable as PIO.

UART configuration parameters, such as baud rate and packet format, are set using module firmware.

Note:

To communicate with the UART at its maximum data rate using a standard PC, an accelerated serial port adapter card is required for the PC.

Table 7.1 shows the possible UART settings.

Paran	Possible Values		
	Minimum	1200 baud (≤2%Error)	
Baud rate	Minimum	9600 baud (≤1%Error)	
	Maximum	4Mbaud (≤1%Error)	
Flow c	RTS/CTS or None		
Par	None, Odd or Even		
Number of stop bits		1 or 2	
Bits per byte		8	

Table 7.1: Possible UART Settings

The UART interface resets module on reception of a break signal. A break is identified by a continuous logic low (0V) on the UART_RX terminal, as Figure 7.2 shows. If tBRK is longer than the value defined by the PSKEY_HOSTIO_UART_RESET_TIMEOUT, a reset occurs. This feature enables a host to initialize the system to a known state. Also, module can issue a break character for waking the host.

Figure 7.2: Break Signal

Refer to PSKEY_UART_BITRATE for more information about the baud rates and their values. Generated baud rate is independent of selected incoming clock frequency.

UART Configuration While Reset is Active

The UART interface is tristate while module is being held in reset. This enables the user to connect other devices onto the physical UART bus. The restriction with this method is that any devices connected to this bus must tristate when module reset is de-asserted and the firmware begins to run.

12. Audio Interface

The audio interface circuit consists of:

- Stereo/dual-mono audio codec
- Dual analogue audio inputs
- Dual analogue audio outputs
- 6 digital MEMS microphone inputs
- A configurable PCM, IS or SPDIFinterface

For more information on module audio path configuration see the CSR8670 Audio Development Kit (DK- 8670- 10060- 1A).

Figure 9.1 shows the functional blocks of the interface. The codec supports stereo/dual-mono playback and recording of audio signals at multiple sample rates with a 16-bit resolution. The ADC and the DAC of the codec each contain 2 independent high-quality channels. Any ADC or DAC channel runs at its own independent sample rate.

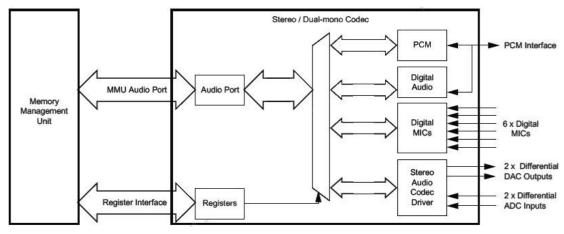


Figure 9.1: Audio Interface

The interface for the digital audio bus shares the same pins as the PCM codec interface described in Section which means each of the audio buses are mutually exclusive in their usage. Table 9.1 lists these alternative functions.

PCM Interface	SPDIF Interface	I & Interface
PCM_OUT	SPDIF_OUT	SD_OUT
PCM_IN	SPDIF_IN	SD_IN
PCM_SYNC	-	WS
PCM_CLK	-	SCK

Table 9.1: Alternative Functions of the Digital Audio Bus Interface on the PCM Interface

12.1 Audio Input and Output

The audio input circuitry consists of:

- 2 independent 16-bit high-quality ADC channels:
 - Programmable as either microphone or line input
 - Programmable as either stereo or dual-mono inputs
 - Multiplexed with 2 of the digital microphone inputs.
 - Each channel is independently configurable to be either single-ended or fully differential
 - Each channel has an analogue and digital programmable gain stage for optimisation of different microphones
- 6 digital MEMS microphone channels, of which 4 have independent codec channels and 2 share their codecs with the 2 high-quality audio inputs

The audio output circuitry consists of a dual differential class A-B output stage.

Note:

Module is designed for a differential audio output. If a single-ended audio output is required, use an external differential to single-ended converter.

12.2 Audio Codec Interface

The main features of the interface are:

- Stereo and mono analogue input for voice band and audio band
- Stereo and mono analogue output for voice band and audio band
- Support for stereo digital audio bus standards such as IS
- Support for IEC-60958 standard stereo digital audio bus standards, e.g. SPDIF and AES3 (also known as AES/EBU)
- Support for PCM interfaces including PCM master codecs that require an external system clock Important Note:

To avoid any confusion regarding stereo operation this data sheet explicitly states which is the left and right channel for audio output. With respect to audio input, software and any registers, channel 0 or channel A represents the left channel and channel 1 or channel B represents the right channel.

12.3 Audio Codec Block Diagram

Stereo Audio, Voice Band and Digital Microphone Input

Note:

L/R pins on digital microphones pulled up or down on the PCB

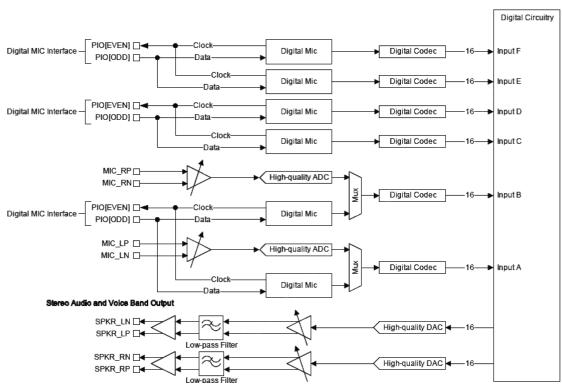


Figure 9.2: Audio Codec Input and Output Stages

The module audio codec uses a fully differential architecture in the analogue signal path, which results in low noise sensitivity and good power supply rejection while effectively doubling the signal amplitude.

12.4 Codec Set-up

The configuration and control of the ADC is through software functions described in appropriate development kit documentation. This section is an overview of the parameters set up using the software functions.

The Kalimba DSP communicates its codec requirements to the MCU, and therefore also to the VM, by exchanging messages. Messages between the Kalimba DSP and the embedded MCU are based on interrupts:

- 1 interrupt between the MCU and Kalimba DSP
- 1 interrupt between the Kalimba DSP and the MCU

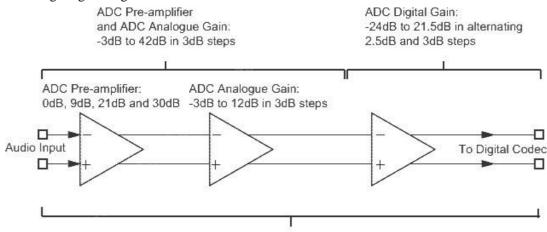
Message content is transmitted using shared memory. There are VM and DSP library functions to send and receive messages; see appropriate development kit documentation for further details.

12.5 ADC

Figure 9.2 shows the module consists of 2 high-quality ADCs:

- Each ADC has a second-order Sigma-Delta converter.
- Each ADC is a separate channel with identical functionality.
- There are 2 gain stages for each channel, 1 of which is an analogue gain stage and the other is a digital gain stage.

12.6 ADC Sample Rate Selection


Each ADC supports the following pre-defined sample rates, although other rates are programmable, e.g. 40kHz:

- 8kHz
- 11.025kHz
- 16kHz
- 22.050kHz
- 24kHz
- 32kHz
- 44.1kHz
- 48kHz

12.7 ADC Audio Input Gain

Figure 9.3 shows that the CSR8670 BGA audio input gain consists of:

- An analogue gain stage based on a pre-amplifier and an analogue gain amplifier
- A digital gain stage

System Gain = ADC Pre-amplifier + ADC Analogue Gain + ADC Digital Gain

Figure 9.3: Audio Input Gain

12.8 ADC Pre-amplifier and ADC Analogue Gain

Module has an analogue gain stage based on an ADC pre-amplifier and ADC analogue amplifier:

- The ADC pre-amplifier has 4 gain settings: 0dB, 9dB, 21dB and 30dB
- The ADC analogue amplifier gain is -3dB to 12dB in 3dB steps
- The overall analogue gain for the pre-amplifier and analogue amplifier is -3dB to 42dB in 3dB steps, see Figure 9.3
- At mid to high gain levels it acts as a microphone pre-amplifier
- At low gain levels it acts as an audio line level amplifier

12.9 ADC Digital Gain

A digital gain stage inside the ADC varies from -24dB to 21.5dB, see Table 9.2. There is also a fine gain interface with a 9-bit gain setting allowing gain changes in 1/32 steps, for more infomation contact CSR.

The firmware controls the audio input gain.

Digital Gain Selection Value	ADC Digital Gain Setting (dB)	Digital Gain Selection Value	ADC Digital Gain Setting (dB)		
0	0	8	-24		
1	1 3.5 9				
2	6	10	-18		
3	9.5	11	-14.5		
4	12	-12			
5	15.5	13	-8.5		
6	18	14	-6		
7	21.5	15	-2.5		

Table 9.2: ADC Audio Input Gain Rate

12.10 ADC Digital IIR Filter

The ADC contains 2 integrated anti-aliasing filters:

- A long IIR filter suitable for music (>44.1kHz)
- G.722 filter is a digital IIR filter that improves the stop-band attenuation required for G.722 compliance (which is the best selection for 8kHz / 16kHz / voice)

For more information contact www.jinoux.com.

12.11 DAC

The DAC consists of:

- 2 fourth-order Sigma-Delta converters enabling 2 separate channels that are identical in functionality, as Figure 9.2 shows.
- 2 gain stages for each channel, 1 of which is an analogue gain stage and the other is a digital gain stage.

12.12 DAC Sample Rate Selection

Each DAC supports the following sample rates:

- 8kHz
- 11.025kHz
- 16kHz
- 22.050kHz
- 32kHz
- 40kHz
- 44.1kHz
- 48kHz
- 96kHz

12.13 DAC Digital Gain

A digital gain stage inside the DAC varies from -24dB to 21.5dB, see Table 9.3. There is also a fine gain interface with a 9-bit gain setting enabling gain changes in 1/32 steps, for more

information contact CSR.

The overall gain control of the DAC is controlled by the firmware. Its setting is a combined function of the digital and analogue amplifier settings.

Digital Gain Selection Value	DAC Digital Gain Setting (dB)	Digital Gain Selection Value	DAC Digital Gain Setting (dB)		
0	0	8	-24		
1	3.5	9	-20.5		
2	6	10	-18		
3	9.5	11	-14.5		
4	12	12	-12		
5	15.5	13	-8.5		
6	18	14	-6		
7	21.5	15	-2.5		

Table 9.3: DAC Digital Gain Rate Selection

12.14 DAC Analogue Gain

Table 9.4 shows that the DAC analogue gain stage consists of 8 gain selection values that represent seven 3dB steps.

The firmware controls the overall gain control of the DAC. Its setting is a combined function of the digital and analogue amplifier settings.

Analogue Gain Selection Value	DAC Analogue Gain Setting (dB)	Analogue Gain Selection Value	DAC Analogue Gain Setting (dB)		
7	0	3	-12		
6	-3	2	-15		
5	-6	1	-18		
4	-9	0	-21		

Table 9.4: DAC Analogue Gain Rate Selection

12.15 DAC Digital FIR Filter

The DAC contains an integrated digital FIR filter with the following modes:

- A default long FIR filter for best performance at \geq 44.1kHz.
- A short FIR to reduce latency.
- A narrow FIR (a very sharp roll-off at Nyquist) for G.722 compliance. Best for 8kHz / 16kHz.

12.16 IEC 60958 Interface

The IEC 60958 interface is a digital audio interface that uses bi-phase coding to minimise the DC content of the transmitted signal and enables the receiver to decode the clock information from the transmitted signal. The IEC 60958 specification is based on the 2 industry standards:

- 21 -

- AES3 (also known as AES/EBU)
- Sony and Philips interface specification SPDIF

 The interface is compatible with IEC 60958-1, IEC 60958-3 and IEC 60958-4.

 The SPDIF interface signals are SPDIF_IN and SPDIF_OUT and are shared on the PCM

interface pins. The input and output stages of the SPDIF pins interface to:

- \blacksquare A 75Ω coaxial cable with an RCA connector, see Figure 9.4
- An optical link that uses Toslink optical components, see Figure 9.5.

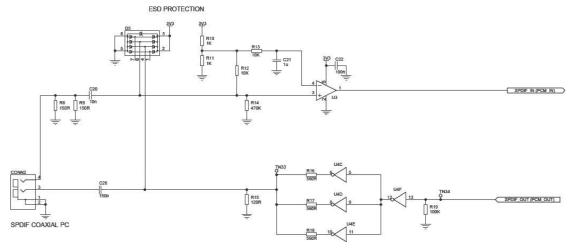


Figure 9.4: Example Circuit for SPDIF Interface (Co-axial)

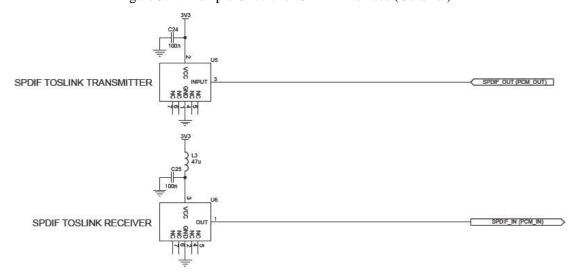
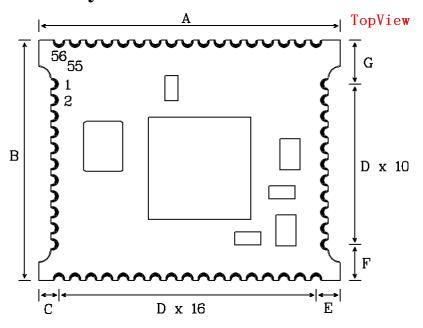
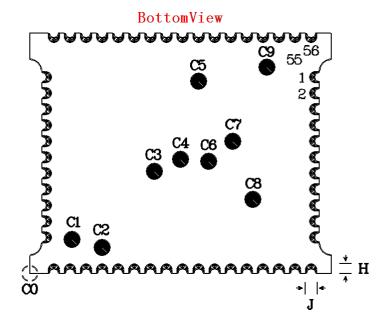




Figure 9.5: Example Circuit for SPDIF Interface (Optical)

13. Physical Dimensions

Α	В	C	D	E	F	G	Н	J	K	L	Unit
750	600	50	40	60	90	110	25	30	74	107	mil
19.05	15.24	1.27	1.016	1.524	2.286	2.794	0.635	0.762	1.88	2.718	mm

Deviation: ± 0.1 mm